

To explore various corrosion detection methods at the critical zone of lighting poles made of ferrous metal

Eddie Gian Commuter Facilities & Systems Management (CFSM)

Background

- The LTA maintains more than **110,000** street lights along public roads in Singapore.
- As part of the maintenance regime, street lamp poles are tested for structural integrity when they reached **five (5)** years old onwards.
- Planted and Flanged-mounted lamp poles are tested.
- Currently, the LTA's street lighting contractors propose the **Relative Loss of Section (RLS)** Technique.
- This method cost about **\$30** per test.

RLS Technique

KLJ IECNNIQUE

- Non-destructive test
- Requires **no excavation** or internal access
- **Pulse induction technique** to induce electromagnetic field in the target areas
- Results are measured in LSU (Loss of Section Unit), which interprets corrosion levels into five classes and provides recommendation in specific timeline for replacement or next test interval

RLS Recommendations

KL3 Kecommendations

2.3 Base - visual observations

Additionally, the portion of the base ground level to *plus* 300mm is visually inspected and classified A to G.

- A. Free from defects
- B. Visible loss of paint/coating only
- C. Surface corrosion only
- D. Pitting/flaking. Minor loss of section
- E. Extensive corrosion. Major loss of section
- F. Hole visible within base/root of unit
- G. Impact damage 1. Minor
 - 2. Significant
 - 3. Major

RLS Recommendations

KL5 Kecommendations

Classification	Average LSU's	Visual Categories					
		А	В	С	D	E	F
1	0 to -10	Retest in 4 years		Retest in 2 years	Retest in 1 year	Replace within 1 month	
2	-11 to -16	Retest in 2 years		Retest in 1 year		Replace within 1 month	
3	-17 to -24		Replac	within 3 months		Replace within 1 month	
4	-25 to -50	Replace within 1 month					
5	> -50	Immediate removal or making safe the unit					

16

in

Problem

Problem

- There is **only one company in Singapore** specialising in the RLS Technique service
- Lack of competitors
- Testing is set at **fixed intervals** with a buffer of up to 1 year

Proposed Solutions

- Any other methods available that could test the structural integrity of lighting poles and produce similar if not better results?
- Other methods should also be a **non-destructive test**
- Are there solutions that could **eliminate the need for interval testing** and **provide active feedback** of the lighting pole's structural integrity?

IIIIGIIIIG

- Q2 2020 Proposed Prototype
- Q4 2020 Pilot Deployment
- Q2 2021 Full Implementation

Evaluation Criterion	Weightage (%)
1. Technical feasibility of solution	30
2. Innovation	20
3. Economic Feasibility and Commercialization Potential (Include development cost and final product cost)	30
4. Capacity and Expertise to Execute Project	20
Total Score	100

<u>Å</u>

SOMBUS

0

Land Transport Authority We Keep Your World Moving

SCIUGUS

INC ENG

